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F I N E  S T R U C T U R E  OF B O U N D A R Y  FLOWS IN M E D I A  

W I T H  D I F F U S I O N  A N D  H E A T  C O N D U C T I O N  

A. V. Kistovich and Yu. D. Chashechkin UDC 532.516.539.3 

The influence of  the boundary conditions at the surfaces confining multicomponent 
stratified media on the formation of flows in problems of  multicomponent diffusion and 
thermoconcentration convection is investigated. Exact solutions of these problems are given. 
Analysis of  these solutions shows that several boundary layers (concentration and velocity 
layers) are formed in the case of  multicomponent diffusion, which leads to decomposition of  the 
physical fields and splitting of  the characteristic spatial scales. In the case of  thermoconcentration 
convection, a more complicated dynamic structure is formed, which, besides boundary layers, 
includes injection fronts. The latter have a significant effect on the flow characteristics at 
distances far  exceeding the thickness of the boundary layers. 

The appearance of [1] has increased interest in the analysis of boundary effects in stratified and rotating 
media. A model of steady mountain winds in stably stratified media was constructed by Prandtl [2]. Similar 
effects are observed on the continental slopes of the ocean [3, 4]. The solutions constructed by Prandtl [2], 
Phillips [3], and Wunsch [4] describe boundary flow with a unified scale of variation of all physical variables. 

The results of [2-4] are not consistent with exact solutions of the problem of diffusion near a vertical 
or horizontal wall. The asymptotic solution of the nonsteady problem (the approximation of short times) 
describes more complicated boundary flow with separate scales of variation of velocity and density [5]. Slow 
Couette flow in a sloping channel demonstrates similar properties [6]. 

An exact solution of the nonsteady problem with separate scales of variation of velocity and density 
was constructed by Kistovich and Chashechkin [7-9]. The resulting flow was investigated experimentally by 
Phillips et al. [10]. 

Under the actual conditions of a multicomponent medium, one observes stratification due to 
multicomponent diffusion or thermoconcentration convection [11], whose dynamics is affected by boundary 
flows [12]. 

Processes in an isothermal stratified medium with several dissolved substances are called 
multicomponent diffusion (MCD) below, and the heat propagation in a liquid that is stably stratified in 
concentration (salinity) is called the thermoconcentration convection (TCC). 

Formula t ion  of  t h e  P r o b l e m .  We consider the flow of a stratified multicomponent liquid over 
an infinite inclined wall. The stratification is given by the distribution of the concentration of admixtures, 
for which the wall is impermeable, or of one admixture and temperature. We consider the two-dimensional 
problem in the Boussinesq approximation [13]: 

OS 
cgu ........ V p  -F v A u  -1- p~g, p~ = ~ S  4- aT,  V �9 u = O, - -  + u �9 V S  = k s A S ,  
Ot = po Ot 

OT 
Ot + u .  V~" = kTAT ,  S = S + So(z), T = T + To(z), (1) 
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- , To(z) = Too 1 ~: . 

Here u is the velocity field, p is the pressure minus the hydrostatic pressure, S and T are perturbations in 
the concentrations of the first and second admixtures in the case of MCD and in the salt concentration and 
temperature in the case of TCC, So(z) and To(z) are the stratified distributions of the corresponding physical 
fields, with the upper signs in the equations for the case of MCD and the lower signs for the case of TCC, 
As and AT are the scales of the stratifications, ~ and a are the coefficients of admixture compression (MCD) 
or salt compression and thermal expansion (TCC), ks, kT, and v are the diffusivities of the components S 
and T and kinematic viscosity, respectively, p0 is the density of the pure liquid, and g is the acceleration of 
gravity. 

The initial conditions are the equality to zero of the perturbations of all the physical fields. The 
conditions at infinity are the same. 

The boundary conditions for the MCD and TCC cases differ. For MCD, we set the normal components 
of the gradients of the total fields .g and ~' to zero at the wall. In the TCC case, only the normal component 
of the salt distribution gradient .~ is set to zero at the wall, and for the temperature we adopt the condition 
of heat exchange between the wall and the medium, characterized by the heat-transfer coefficient 7- The 
boundary conditions for the velocity field u are the attachment condition. 

In the general situation, the wall is inclined to the horizontal at an angle ct, and, hence, it is convenient 
to convert to a coordinate system ~, t /at tached to the wall (see Fig. 1). 

Genera l  M e t h o d  of  Solv ing  t h e  P r o b l e m .  As in [7], the solution is sought in the form of Fourier 
series in the angle cr: 

(30 OO OO 

u = ~ U~ sin(ha), S = So + ~ S~ cos(ha), T = To + ~ Tn cos(ha), (2) 
n = l  n = l  n = l  

where u is the component of the velocity field along the ~ axis, and the component along the 7/axis is identically 
equal to zero. 

Before substituting (2) into (1), we first make the variables dimensionless using the rules 

'7* /rc\[:~v)l/2 ks kT S* T* t .  t 
= ~, = 71, gS ---- -~-, 6T = --, = flS, = TaT, 

g (3) 

~x)/g'~ll2' AsAT . . . 
U* = -2 (Ag) - I / 2U . ,  N = A = As + AT'  G,, = S~ + T~,, 

and if either of the scales As or AT equals zero, the other scale is chosen for A. The upper sign is chosen in 
the MCD case and the lower sign in the TCC case. 

Substituting (2) into (1) with allowance for (3) generates an infinite system of equations for determining 
the Fourier coefficients in expansions (2): 

OU1 ,, 
0t U 1 = 2 G 0 - G 2 ,  
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ou. 
Ot U" = G,,_, - G,+, ,  n = 2, 3 , . . . ,  

(93, zsS~ = as(U,,+l - Un-l), Uo = U-I --- O, (4) 
Ot 

02", eTT~' = aT (Un+l -- Utt-1) n = 0, 1, 
Ot ' " ' "  

where as = A/4As and aT = A/4AT. 
As in [8], the solution of system (4) is hindered by the fact that the equations are "engaged" with 

each other. The iterative procedure for finding the coefficients {Ui}, {Si}, and {Ti} is preceded by a change 
of variables. To derive rules for carrying out such changes, here, as in [7], we found Lie group generators 
corresponding to system (4), compiled different infinite linear combinations of generators that produce the 
change of the variables {Ui}, {Si}, and {Ti}, and, as in [8], performed summation of infinite diverging series 
[14] that determine the coefficients of the variables of the problem. As a result, we derived rules for changing 
the variables in (4), which ensures the procedure for solving the problem. 

A consistent description of this method does not seem possible, and we therefore give another method 
for deriving the rules of changing the variables, which was obtained using group analysis. 

In the first step of the transformation to the new variables {t~}, {Qi}, and {Ri}, we can use the known 
solution for a = 0 [9]. From expansions (2) we obtain 

T(cr = 0) = To + TI + T2 +..., S(a = 0) = So + 5'i + $2 + .... 

The quantities T(0) and S(0) are chosen as the new variables R1 and Q1, for which the expansions in {Ti} 
and {Si} are written in somewhat altered form: 

R, = To + T2 + T4 + . . .  + T, + T3 + Th + . . . ,  QI = So + S2 + S4 + ... + S, + S3 + Ss + . . . .  

In the second step, we need to combine the equations of system (4) so that the right side contains 
Q1 - R,. This can be done by introducing the variable 

= 0'1 + 3U3 + 5U5 + 7/./7 + . . .  + 2(U2 + 2U4 + 30"6 + 40"8 + . . . ) .  

In the third step, we must return to the equations for {Qi} and {R4} and combine them so that the 
right side contains 14. This is achieved by introducing the variable 

//2 = T2 + 4T4 + 9T6 + 16Ts + . . .  + 2(T3 + 3/'5 + 6TT + 10:/'9 + . . . ) .  

Performing this operation by turns with Eqs. (4), we obtain the following system of new variables: 

R,  = To + T2 + T4 + . . .  + T, + T3 + Th + . . . ,  

//2 = / ' 2  + 4T4 + 9Te + 16Ts + . . .  + 2(T3 + 3T5 + 62"7 + . . . ) ,  

�9 ~ ~ �9 �9 ~ �9 ~ . . . . .  ~ �9 ~ ~ ~ . . . .  

Vl = U, + 30"3 + 5U5 + 7U7 + . . .  + 2(0"2 + 2U4 + 30"6 + . . . ) ,  

-- 0'3 + 50"5 + 14UT + 300"9 + . . .  + 2(/./4 + 40"6 + 10s + . . . ) ,  

(5) 

�9 ~ ~ o �9 �9 �9 �9 ~ ~ ~ �9 ~ ~ ~ �9 ~ �9 o �9 �9 �9 

The equations for {Qi} are similar to those for {R~}. 
Equations (5) are inverted using the known solution for a = ~r/2 [9], T(a  = ~r/2) = T o - T 2 + T 4 - T 6 + . . . ,  

and the rules 

To = + - + 35R ' - , 

= = . . . ,  

v ,  = v ,  - + + . . . ,  (6a)  
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T1 = R~ ~ - R~ ~ + 2Ri ~ - 5Ri ~ + 14R~~ - . . . ,  

T3 = R~ ~ - 3R~ ~ + 9R~ ~ - 28R~ ~ + . . . ,  T5 . . . .  , (6b) 

/-]2 = V1 ( e ) -  2V (e) + 5V3 ( e ) -  14V4 (e) + - . - ,  U4 = V2 ( e ) -  4V (e) + 14V(e) - . . . ,  U6 . . . . .  

Substituting (5) into (4) yields two systems of equations connecting the Fourier coefficients {Vff)}, 

{Q!~ and {R! ~ and {V/(~ {Q!~)}, and {R!")}: 

OR~ ~ 
Ot 

0V1 (~ 
Ot 

ov,,(') v2)" = n ( : ) -  Q~o), . = ~, 2, 
Ot " ' "  

. oq~ ~ OO~~ ~sO~ ~ = o, ~sO( .~  ' '  = - ~ s V , , ( : ) ~  (7a) 
Ot at ' 

~,~Ri ~ = o, oR~)ot ~,.~o),, = -.,~v?),,_ . = 2, 3, . . . ;  

w,"= 

,, OQ~) ~176 ~sO?)=o, ~sO~')"=-o~v3!~, (Tb) 
at ot - 

,, OR( d ,~,,, oR.') ~Rf) '  = 0, ~ -  ~ ,  = -,,~.v,~~ . = 2, 3, 
Ot Ot . . . . .  

Solving Eqs. (7) enables one to determine the coefficients of expansions (5) and, using the inversion 
equations, to determine the coefficients of expansions (2), i.e., to solve the stated problems. 

Because of differences in the boundary conditions for the MCD and TCC cases, the problems are solved 
separately below. 

Exac t  So lu t ion  of  t h e  M C D  P r o b l e m .  The boundary conditions for the MCD problem are given 
in the form of the condition of impermeability of the wall to the admixtures, 

~S[,~= ~ OT 
= O'~ I,I=o = 0 

and the attachment condition, uls=0 = 0, which, after transformation to the variables {P~}, {Qi}, and {Ri}, 
take the form 

v.(o) I =o ,  . = ~ , 2 , . . . ,  ~(:)'I =R~o I)' = 0, n = 2 ,  3 , . . . ,  
q=O q=O ~=0 

Q(~ h~=o = A(~ R~~ = B(~ n = 2, 3, . . . ,  (8) 

)1 Qs176 # I o = = R  )' = 0 ,  n = l ,  2 , . . . ,  
I/=0 7/=0 t/=0 

where A(@ and B (~ are constants. 
Introducing, as in [8], the variable y = qt -1/2, which is both one of the group invariants of system (4) 

and a standard substitution in boundary-layer problems, we can represent the solution of problem (7) and 
(8) in the form 

q~.o) = r  p~o) = k(,o)t( , , , - , ) /~,  

( ) - ' (  " 1 y ~ L ~ U  w Q~) = o, ~ ~  ~ K~,U ~ 2' (2~s)'l~ + 
m--1 \ m = l  

R~ ) =0,  ~(o) = D~nU w + E E~nU w 
m=l 2' (2eT)l/2 m=l 

V (e) = ~r(e)t(4'*--l)/2 ' 

ly)"-' ( 
2' 2'/2 + ~ M~U w 

m = l  

2' 2'/2 + ~ F ~ U  to 

ly) 
2' (2~T),/2 ' 

) 2,(2es),/2 , (9) 
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Vn (~ : 0 ,  Vn (e) ---- E I n U  w-4r" 2,21/2 -[- E J n U  w-~- 2' s)l/2 -]- E G n u  w.-~ 
r n = l  m=l \ (26 ~=1 2' ' 

w = 4 n  - 2 m ,  U ( n  + - e x p  d ( .  

The coefficients K~,  L~,  M~, D~, E~,  F~, I~, J~,  and C~ are connected by recursive equations 
that are similar to the equations [8] 

. 1 - e S L .  = _asln_X, K~ = 2A(~ D 1 - 2B(~ , rnKn~+l = - a s J ~  -1, mLm+l + 2 m 

mD~+ I = - a T C  n - l ,  

~ S - -  1 . 1  n . .  = 

~T --  1 . . 
~ C .  = D. ,  

2eT 

mira+ 1 = E m - L m ,  

1 -- ~TIT, n n-1 
rnE~+l + - - ' ~ - - m  = - a T I ~  , 

rnM~n+ 1 + 1 -- ~S/~T Mn m = _asC~n_l, 
2 

raF~+l + 1 - e T / e S F ~  = _aTJ~_ 1 
2 

n e S  - -  1 . l  n n 
mJ~+l + 2es -m = F ~ -  K~ ,  

eT -- 1 Ca n n rnC~+l + ~ _ m  = D m -  M~, r e = l ,  2 , . . . ,  n = 2, 3, . . . .  

From the boundary conditions we obtain the following additional equations: 

~ 2"(I,1 + J,~ + C,~) 
m = l  r ( 2 n  - m + 312 ) = 0, 

.-1 r(2rn(n_ ) 
m=l 

2"D~ + E 2m(D~ + V~'TE~ + ),, ,  = 0, 
V es l t z n  - ra) 

where F(x) is a gamma function. 
In the anMysis of solution (9), we consider a typical case where the inequality u > ks > k/. is valid. 

From (9) and the structure of the function U it follows that the entire space-time can be divided into four 
domains, for which the characteristic scales axe given by the inequalities 

1) o o > y > v ~ ;  2) q ~ > y >  2V~;  3) q ~ > y > v / ~ - ' ~ ;  4) 2 q ~ > y > 0 .  

It is convenient to further analyze the space--time domains by returning to the physical variables y and 
t. Then, away from the wall, all perturbations are small for er > T t > 2V~'~. 

In the intermediate domain 2x/~'{ > 71 > ~ ,  the velocity perturbations reach a maximum, and 
the density variations are small. This domain can be called a dynamic (or velocity) boundary layer, whose 
thickness is 6u = O(2x/2~). 

In the third domain ~ > r/ > v / ~ - t ,  the velocity variations are less pronounced than in the 
second, and the perturbations of the first admixture S reach a maximum whereas the perturbations of the 
second admixture T are considerably smaller. This domain can be called a first concentration (or density) 
boundary layer, whose thickness is 6pl = O ( v f ~ ) .  

In the fourth domain ~ > ri > 0, which is adjacent to the inclined wall, the velocity perturbations 
become even less pronounced, the variations in the concentration of the first admixture decrease, while the 
variations in the concentration of the second admixture reach a maximum. This domain is called a second 
concentration boundary layer, whose thickness is ~fp2 = O ( ~ ) .  
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Thus, in MCD problems there is a clear separation of the scales at which the most important  variations 
of the different physical fields occur. 

Exac t  S o l u t i o n  of  t h e  P r o b l e m  of  E s t a b l i s h m e n t  of  T C C .  In the case of thermoconcentration 
convection, the boundary conditions change: 

S, [kH OH O, H { T t  00)} = - -  

(TS and 77" are the coefficients of the salt- and heat-transfer surfaces). 
These boundary conditions change in the transformation to the variables {P~}, {Qi}, and {Ri}: 

V (i) ----O, n = 1, 2 , . ,  Q(i)' Q(i] �9 . +' Is  ) =0 ,  n = 2 ,  3 , . . . ,  
7/=0 I /=0  

OlO)'+TsOi~ .=o = A(~ Ole) '+TsO(e)L:o = 0 ,  (10) 

+TTR~ ') = B (i), R(~ ) ' + T T R  (i) =0 ,  n =  2, 3 , . . . ,  
r l=O 7/=0 

where (i) is (e) or (o). 
In (10), instead of the condition of salt nonpenetration, we deliberately used the condition of salt 

exchange with the plane, characterized by the salt-transfer coefficient 7s. Below, it is shown how the solution 
of (7) and (10) smoothly becomes the solution of the problem with the salt nonpenetrat ion condition as 
7s --* O, and a solution of a more general problem is given. 

In the problem considered, it is convenient to introduce new variables, found by a group analysis of 
Eqs. (7) after reducing boundary  conditions (10) to a uniform type: 

,7 17 T/ 
Y = 2il l  2, YS = 2(est) , l  2, YT = 2(,Tt) , /2,  zs = YS -- 7SteSt) " /  

The solutions of (7) and (10) have the form 

n n - - 1  

ZT = YT -- TT(6Tt) 1/2. 

n - I  

Q~) = O,~)t w~-'), O, (~ = ~_, K,~I (w - 1,ys, zs) + ~., L~I  (w - 1,yT, ZT) + ~_, M,~I (w - 2,y), 
m = l  m----1 m----1 

n n - 1  n - I  

40) ---- ~ ~ N ~ "~ E D ~ I  (w - 1,yT, ZT) + ~_, E,~I (w - 1 ,ys , zs )  + ~_~ F,~I (w - 2,y) ,  (11) 
m----1 m = l  m = l  

11 11 11 

v2) = f/Yh ~"-', f,2 ) = ~ i~ i  (~,y) + ~ J~l  (w + 1,ys,zs) + ~ c~d (~o + x,yr, zv), 
m = l  m----1 m----I 

where w = 4n - 2m, and the  function I(w,  y, z) is defined by the equation 

I (w,  y, z) = exp ( -y2)(exp (y2)iWerfc (y) + exp (z2)iWerfc (z)), 
oo 

I (w ,y )  = i~erfc (y), ikerfc (x) = f ik-lerfc (x)dz ,  k = O, 1, 2, . . . .  
z 

The function I(n,  y, z) introduced above, which can be called a standard integral, is a solution of the 
differential equation 

02I 02I OI OI 
oy2 + ~ + 2Y N - 2 z ~  - 2hi = o. 

The structures of the  solutions for V (~ Q(e) and R (e) are fully analogous to the structure of (11) and, 
hence, they are not given. The  coefficients K~,  L~,  M~,  D~,  E~,  F~, I~,  J~ ,  and C~ of the expansions 

(11) and expansion coefficients for V (~ Q(e), and R~ ~) are determined from recursive relations obtained by 
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substituting the solutions into (7) and (10), and they coincide with Eqs. (9) for the MCD problem, except for 
the equations that follow from the boundary conditions: 

l(, I = Vr~-g'~a(~ D] = ~/-~E-TB(~ 

L .-1 .-1 M~ 2 - 7 s  
U~ (##(~S,0) - 7S~(ST, 1/2)) + Y~. L~  (##(~T, 0) -- 7S#~(sS, 1/2)) + ~ 24._2., r ( 2 .  - = )  - o, 

m = l  m = l  m----I 

E + 0, 
24"-2mr(2n - m + I) z_, 24.-2m-ar(2n _ m + 3/2) 

m ~ l  ~- 

n - 1  . - I  Fro" 2 - "YT 
D,~ (~(ST,0) -- 37"~(1, 1/2)) + Y~ E~, (q~(ST, 0) -- T/'q~(1, 1/2)) + ~ 24n_2m r ( 2 n - - m )  -- 0, 

m = l  m = l  m = l  

22n-4m 

z) = v r(2. - - =)" 
As in the MCD case, the TCC solutions are characterized by separate dynamical, density, and 

temperature scales. At the same time, two new scales are present in the flow, characterizing the degrees 
of salt transfer and heat transfer of the plane surface, and the flow dynamics itself differs from that in the 
MCD case. 

Analysis  of t he  P rope r t i e s  of the  Solut ions Obta ined .  For a detailed examination of the 
similarity and difference in flows for the MCD and TCC cases, we introduce the concept of the "front of 
the boundary layer." The position of this front is determined by the relation r//v/2"ff/= constk, where k is the 
kinetic coefficient that corresponds to the boundary layer. 

The propagation velocity of the front is defined by the equation 

Or/ qrk-~.  (12) vk -- ~ -  -- constk 

It is seen from (12) that the ratios of the propagation velocities of the fronts of the dynamic and density 
boundary layers do not change during the entire process of formation and development of the flow. Thus, 
in the MCD process, the flow is self-similar from the standpoint of the spatial manifestation of the internal 
scales of the flow. 

In the TCC case, in addition to the three fronts indicated above, two fronts, of salt and thermal 
injection, are present in the flow. If the salt-transfer coefficient of the surface is zero, there is only the 
thermal-injection front. The positions of the injection fronts are determined by the relations zs = consts and 
zr = constT, from which we can determine the propagation velocities of these fronts: 

= const, kV /2t n = { S, (13) 
T. 

It is seen from (12) and (13) that the ratios of the velocities of the injection fronts and the velocities of the 
boundary-layer fronts are not constants. Moreover, the propagation velocities of the boundary-layer fronts 
approach zero with time, tli_m vt = O, whereas the velocities of the injection fronts arrive at constant values: 

vg = V~7tt kH, H = ( S, lim 
t-.co T. 

The time dependence of the distance between the leading boundary of the front and the vertical heater in 
a stably stratified salt solution was determined in [15]. In the initial stage, the size of the region of the 
heated liquid grows in proportion to Vf/, which corresponds to the calculated velocity of the front, which is 

proportional to X / ~ .  
If at the beginning of development of the flow, any of the boundary-layer fronts leads the injection 

fronts, then it eventually leads all the boundary fronts and changes the relationships among the internal scales 
of the flow. This phenomenon has been observed experimentally in tests of convection from a heated inclined 

plane [16]. 
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In contrast to MCD flow, TCC flow is not self-similar, and the distances between the fronts and their 
relative position vary. At the same time, partial self-similarity of the flow occurs at long times.This means 
that the relative position of the injection fronts and the relative position of the boundary-layer fronts are 
preserved. Here TCC flow has a more complicated internal structure, which in addition varies with time. 

The differences in structure and dynamics between MCD ~.nd TCC flows indicate that direct extension 
of the results from studies of MCD processes to TCC processes is not justified, especially for developed flows. 
Partial similarity occurs only at short times, when the injection fronts have just been formed and do not 
significantly affect the flow structure. 

It must be noted that the correctness of the linear approximation in the analysis of convective structures 
is very limited in the case of thermoconcentration convection, and in actual situations the differences between 
MCD and TCC processes axe even stronger. 

Conclusion. Our studies of the influence of boundary conditions showed that in the MCD case, the 
main feature of the flows is the development of several boundary layers (density and velocity layers), which 
leads to decomposition of the physical fields of the problem and separation of the characteristic spatial scales. 
In the TCC case, a more complicated dynamic structure is formed, characterized, in addition to boundary 
layers, by injection fronts, which have the greatest influence at distances far exceeding the thickness of the 
boundary layers. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 96-05- 
64004). 
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